分式方程教学反思14篇
作为一名人民老师,我们要有很强的课堂教学能力,借助教学反思我们可以学习到很多讲课技巧,那么应当如何写教学反思呢?下面是小编为大家整理的分式方程教学反思,仅供参考,希望能够帮助到大家。
分式方程教学反思 篇1进入初三总复习以来,我一直都在尝试探索一种比较适合总复习课的课堂教学模式,经过近两周的教学实践,我基本形成了以下的课堂教学流程:作业评析→出示学习目标→考点分析→学生独立完成学案→小结归纳→课堂检测,今天在进行“可转化为整式方程的分式方程”的复习课时,我也是按这样的流程来进行,没想到发生了一些意外,以致于影响了整堂课的教学效果。
在作业评析环节,我照常收集学生上堂课测验及课后作业中存在的问题,由学生讲解其解答方法与思路,然后再给时间让学生自行改正。为了突出本节课与分式的化简求值的区别,我还收集了学生以往在分式的运算中容易出错的一个问题。没想到仍有相当多的学生在解答这个问题时却依然遇到了当初那样的困难,出现了同样的错误,于是我不得不已再花时间让学生自我反思与自我改正解答的方法。这样,课堂已过去了10来分钟的时间了,对后面的教学产生了直接的影响。
在学生独立完成学案的过程中,虽然我在此之前曾引导学生回顾解分式方程的一般步骤,也书写在黑板上,但我没想到的是依然有相当多的学生对解分式方程的步骤是陌生的,特别是解答过程的书写更是显得百花齐放,有个别学生甚至于无从下手。于是我不得不已用一个例题示范解答过程,这样又花去了不少的时间,导致学生在课堂教学内容难以顺利完成。
那么,是什么原因导致出现了这些意外呢?作业的评析环节为什么要花这么多的时间呢?学生为什么地分式方程的解答思路过程是如此的陌生呢?
答案并不难以找到。
一方面,在作业评析的环节里,我收集到的问题都是学生容易出错的问题或感到比较困难的问题,虽然这些问题他们都曾遇到过,但难度自然不会小,因此当需要他们再次解答时自然也就容易出现错误,因此所花的时间当然就较多了。
另一方面,学生对分式方程的解答思路方法的`陌生,并不是因为分式方程的解答思路方法有多难或有多复杂,而是因为这部分内容离当初学生学习的时间太远了,而且当初在学习这部分内容时所用的课时就非常少,因此在学生的大脑中留下的印象并不深刻。
问题原因似乎找到了,那么有没有什么好的办法去解决呢?
先来看作业评析环节中出现的问题。仔细分析课前准备及教学过程中的每一个环节,再回忆当初这些问题的解答方法,我发现了问题的根源,当时在解答这些较难或较易出错的问题时,为了赶课堂的教学时间,完成教学任务,我没有给时间让学生进行充分的交流,而是包办式的进行讲解分析,那时虽然讲解得清晰易懂,学生当时也反馈能听明白了,但当要他们真正动手时,却依然犯同样的错误。因此,缺少交流的问题讲解,虽然听懂,但不会做。同时,我选择的问题较多(3个)也是花费时间较多的原因,但如果不把这些易出错的问题都解决,那么学生所积累下的问题岂不是越来越多了?
再来看我所编写的学案吧。我本以为学生对分式方程的解答思路步骤是非常熟悉的,所以没有在学案中安排例题示范去让学生自主阅读、复习。那么,在学案中安排例题示范会不会比让学生在课堂练习过程中出现问题时再解释好些呢?我想,前者也许会省下课堂教学时间,但后者也许能给学生更深的印象,后者也许教学效果会更好。
另一方面,课前我已预测到学生可能会把分式方程的解法与分式的化简相混淆起来,很有可能什么出现在进行分式的化简时也去分母的错误。可我却在学案中忽视了编一两个分式的化简的问题,因此学生在课堂上也就无法对这两者进行了比较。
因此,在编写学案时,特别是集体备课时,必需对每一个问题进行推敲,以使学案更能发挥辅助学生复习的作用。
那么,节课剩下的问题只能在下一节课再进行解决了!
分式方程教学反思 篇21、解可化为一元一次方程的分式方程的基础是会解一元一次方程,综合知识运用点多,难点在于要正确地把分式方程化为一元一次方程,问题的'关键是在去分母,包括正确乘于各分母的最简公分母、正确去括号、合并同类项等,学生在做题时要很小心才行,如果其中有一步走错了,特别是去分母这一步错了,后面的功夫便白费了,所以在教学中教师要引导学生耐心地攻克每一个难点,千万不要在去分母时忘记把没有分母的项也乘于它们的最简公分母。
2、对于一些分母需要变形的分式方程,强调要通过因式分解才能找出它们的最简公分母,在找公分母时还要注意互为相反数的情况,千万不要把问题复杂化,如果能够正确地找出最简公分母并去括号,就接近了成功了。要鼓励学生耐心一些,每一步要细心、细心再细心。任何一步错了都会导致后面的劳动白费。
3、我们在教学中高估了学生,以为教师知识点已经帮学生复习过了,学生就会了,可是在做练习时学生不是错这、就是错那,总之是很难得到正确的答案,所以要真正地能够做到基本训练到位、学生能得出正确的结论才是过关的体现。
分式方程教学反思 篇31、在复习中引入新的教学重点,回顾以往所学习的方程知识,采用让学生自己说出几个一元一次方程并求解的方法,充分发挥了学生的主动性,活跃了课堂气氛。为本节课开了一个好头。
2、利用学生的一个求不出解的一元一次方程(x-1)/3+1=(2x-3)/6,借机让学生明确可化为ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的让学生为后面的学习做好了铺垫。也吸引了学生的注意力,让学生觉得有趣而一步一步的听下去。
3、通过设问,活动,让学生亲自感知,体验,在感知和体验中进行质疑、思考与探究,通过质疑、思考与探索发现新知,激发了学生的参与热情,培养了学生的探索意识,使学生在喜悦的气氛下自主的学习。
通过本节课,也使我领悟到,在今后的教学中,应做到以下几点:
1、变枯燥为有趣同,让学生成为整个教学的重点。
兴趣是最好的老师,只有充分调动学生的'学习热情,才能使学生真正参与学习中来,才能主动地去学习。当然,这需要老师多下功夫,多联系实际,多设计情景,让学生觉得不是在上课,而是在演电视剧,而他就是其中的主人公。
2、变复杂为简单。
越简单学生就越想学,越会做学生就越想做,简单之中蕴含着大道理,简单的做多了,熟练了,才可能去做复杂的。当然这需要形式多样,而不能单一。
3、给学生足够的思考空间,不要急于给出答案,就是学生说错了,也不要把学生硬拉过来,而应该给学生留下思考的空间。
分式方程教学反思 篇4本节课分式方程的解法部分属于重点,难点为利用分式方程解实际问题。分式方程的解法是解决大多数数学问题的基础公具,应让学生们从思想上认识到它的重要性,解实际问题需 ……此处隐藏2963个字……对运算过程推理的理解上,把分式的基本性质做到灵活运用。
再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!
分式方程教学反思 篇11一、设计思路:本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学 应用 打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的.区别和联系。
二.教学知识点:在本课的教学过程中,我认为应从这样的几个方面入手:
1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。
2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。
3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
三、总体反思:首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。
其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。
最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。
总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。
分式方程教学反思 篇12一、设计思路:
在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,
由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的'练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。
这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。
二、教学知识点:
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。
分式方程教学反思 篇13解分式方程的思想是将分式方程转化为整式方程,验根是解分式方程必不可少的步骤。分式方程又是解决实际问题的工具之一。
教学设计中蕴涵的数学思想和数学方法:《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。
教学目标:
1.了解分式方程的概念,和产生增根的原因。
2.掌握分式方程的`解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
重点、难点
1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
3.认知难点与突破方法
解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。
要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。
分式方程教学反思 篇14数学的学习过程应当是一个充满生命力的过程。我们在教学中也应该想办法让学生动起来,使课堂活动起来。在今天我所听的《分式方程的应用》一课,也使我体会到了这一点。
本节课是《分式方程的应用》的第一课时,课堂上顾老师并没有纯粹地就题论题,而是采用了如下方法:一是改变例题和练习的呈现形式,使教学内容更有趣味性。二是让学生自编应用题目,体验学习数学的快乐。尤其是在让学生自编应用题的时候,个个都是紧皱眉头,冥思苦想,很快就开始你说我说,一个个精神抖擞,煞那间教室中一片热闹的场面。顾老师这时就抓住这个机会,让同学们之间互相交流,各自说出自己编的题目。同学们都能联系自己身边发生的或与生活密切相关的实际例子。通过这样的活动,我认为一方面可以锻炼学生的`思维,另一方面也可以提高学生解决实际问题的能力。从而也可以使学生体会到数学的应用价值。
在以后的教学中,我也要象顾老师一样,精心设计活动,充分调动学生参与学习的积极性,使学生动起来,课堂活起来,真正使学生乐有所学,乐有所获。