《植树问题》说课稿
作为一名教学工作者,时常会需要准备好说课稿,说课稿可以帮助我们提高教学效果。我们该怎么去写说课稿呢?下面是小编整理的《植树问题》说课稿,仅供参考,欢迎大家阅读。
一、设计理念及意图:
1、以课标为理论依据,为本节课把脉。
《课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和解决问题的策略。”
(新课标实施后,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了“数学广角”这一单元,通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。)
2、注重生活体验,探求事物中隐含的规律。
有意义的学习是学生在具体情境中通过生活体验而自主建构的。体验是学生活动化学习的关键,是建构知识的基础。因此,利用学生的生活经验,结合生活实际,学生经历从实际问题中抽象出数量关系,并运用所学知识解决生活实际问题。既重视了数学思维培养,又渗透了数学方法,探求给定事物中隐含的规律或变化趋势。”
二、【教学内容及分析】
我执教的内容是人教版小学数学四年级下册第八单元数学广角例1--植树问题。它在生活中的应用非常广泛,具体情况复杂而多样。
现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。
本节课主要探讨关于在一条线段植树的问题,即使在一条线段植树也有不同的情形:只栽一端、只栽中间、两端都栽的几种情形。例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。
植树问题的教学旨在向学生渗透有关植树问题的一些思想方法和策略,提高学生的综合分析、推理能力。
说教学目标:依据教材、教参的编排体系和编写意图我确定本节课的教学目标为:
1、学生通过小组合作、交流,经历将实际问题抽象出植树问题模型的过程,掌握在线段上植树(两端要栽)的情况中“棵数=间隔数+1”的关系。
2、会应用植树问题的模型解决一些相关的实际问题。
3、学生能借助图形理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与棵数、总长、间距的关系,感悟数形结合的思想。
4、感悟构建数学模型是解决实际问题的重要方法之一。
5、学生经历和体验“复杂问题简单化”的解题策略和方法。
说教学重点、难点:
教学重点:
学生从实际问题中探索并总结出两端都种植时“棵树=间隔数+1”的关系,并能利用发现的规律解决实际问题。
(数学学习,不是单纯的因数学而教学,而是重视学生知识的建构过程,而过程性目标的设立,使得学生思维发展有了凭借,也使数学学习的思想方法真正得以渗透,这也是我们数学教学的实质。)
教学难点:
能把现实生活中类似的问题同化为“植树问题”,建立物体总个数与间隔数之间的关系,并运用植树问题的思想方法解决这些实际问题。
(生活中的实际问题千变万化,学生先分析与“植树问题”的异同,再选择合适的方法,例如:在路旁安装路灯问题,学生先建立路灯的总数相当于植树问题中棵数,再分析间隔数与路灯的总个数之间的关系,需要学生具有一定的分析判断能力,因此具有思维难度)
为了加强学生理解间隔数与棵数之间的关系,利用线段图、小棒、直尺、课件演示等直观手段,让学生发现、总结、运用规律,加深学生对重、难点的理解。
教学具准备:方格纸、小棒、直尺、课件
三、说教法、说学法
教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到点拨、渗透,引导的作用。在本节课中,我力图体现学生的主体地位,发挥学生的主观能动性。因此,我采用小组合作、自主探究式学习模式,学生通过画图等方法探究发现规律,应用规律,通过有序的操作、思考、实践等活动,学生的所想、所悟与直观形象结合,渗透数形结合的方法,深刻体会到解决植树问题的思想方法内涵。
四、说教学流程:
(一)创设情境。
(创设为学校设计植树方案的情境,贴近学生生活,让学生感受到数学问题来源于生活,为生活服务的思想。并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)
二、探究新知。
这一环节是本节课的重点,本节课重点探讨在线段上植树(两端要栽)的情况中“棵数=间隔数+1”的关系,间隔数与棵树的关系其实也是生活中一些类似问题的关系问题,因此,在本节课的第二个教学环节就是向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程,非常重要。
我精心设计了这样4个小环节:
1、出示要求。
2、学生分组设计方案。
3、学生展示自己设计的'方案。
4、引导归纳。
5、尝试应用。
三、巩固应用
1、联系生活
其实我们的生活中类似植树问题的现象有很多,你能举例吗?
师:杨老师也找到一些,请大家试一试。
(1)5路公共汽车的行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
(2)丁丁回家每走一层楼就有12个台阶,共要走72个台阶,丁丁住在几楼?
(3)一座大桥全长1400米,在桥的两边从头到尾每隔20米,有一盏路灯(两端都有),共有多少盏路灯?
(4)工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(5)四戊班56人做课间操,排成2列纵队,每2位同学的距离是1米,从第一位同学到最后一位同学的距离有多少米?
(6)广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?
2、分层练习
A组:一根10米长的木头,把它平均分成5段,每锯下一段需要8分钟,锯完一共需要多少分钟?
B组:同学们布置教室,挂了6只红灯笼,再在每两只红灯笼中间挂了2只黄灯笼,一共挂了几只黄灯笼?
(1)选择一题,独立解题。
(2)组内交流。
(3)集体交流。
(练习题设计有层次性,充分体现本节课的重点,难点,并且又利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想。)
四、小结
师:这节课你有什么收获?
五、板书设计:
植树问题
两端都种:棵数=间隔数+1
总长=间隔数×间距
六、教学效果预设:
通过这样一堂课的教学,学生感受这样两点:
一、复杂问题简单化
现代教学论认为:学生只有在亲身经历或体验一种学习过程中,其聪明才智才能得以发挥出来,任何学习都是一种积极主动的建构过程。学生通过小组合作、交流,学生自主构建植树问题的数学模型,从而体会复杂问题从简单入手的数学思想,感悟数形结合的思想。
二、数学知识生活化
整节课的教学,努力做到放飞学生思维的翅膀,把数学教学融于千姿百态的生活之中,从学生实际出发,通过解决生活中的问题,学生感受到数学知识来源于生活,运用于生活,数学就在我们身边,从而深刻感受到数学的应用价值,激发学习数学的兴趣。营造一份“天高任鸟飞、海阔凭鱼跃”的佳境,让每一位学生都能成为生活的主人,让每一节数学课都成为学生人生路上前进的加油站!